ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 329]      



Задача 53618

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 8,9

На прямой расположены три точки A, B и C, причём  AB = BC = 3.  Три окружности радиуса R имеют центры в точках A, B и C.
Найдите радиус четвёртой окружности, касающейся всех трёх данных, если   а)  R = 1;   б)  R = 2;   в)  R = 5.

Прислать комментарий     Решение

Задача 53717

Темы:   [ Касающиеся окружности ]
[ Гомотетичные окружности ]
Сложность: 4-
Классы: 8,9

Рассмотрим все окружности, касающиеся данной прямой и данной окружности (внешним образом). В каждом случае проведём прямую через точки касания. Докажите, что все эти прямые проходят через одну и ту же точку. (Это же верно и для случая внутреннего касания окружностей.)

Прислать комментарий     Решение


Задача 54579

Темы:   [ Касающиеся окружности ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки постройте окружность, касающуюся данной окружности и данной прямой в данной на ней точке.

Прислать комментарий     Решение


Задача 55490

Темы:   [ Касающиеся окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 8,9

Две равные окружности касаются друг друга. Постройте такую трапецию, что каждая из окружностей касается трёх её сторон, а центры окружностей лежат на диагоналях трапеции.

Прислать комментарий     Решение


Задача 64391

Темы:   [ Касающиеся окружности ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Перебор случаев ]
Сложность: 4-
Классы: 8,9

Три окружности касаются друг друга извне и касаются четвёртой окружности изнутри. Их центры были отмечены, а сами окружности стёрты. Оказалось, что невозможно установить, какая из отмеченных точек – центр объемлющей окружности. Докажите, что отмеченные точки образуют прямоугольник.

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 329]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .