ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 501]      



Задача 54458

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Внутри прямоугольного треугольника ABC (угол B — прямой) взята точка D, причём площади треугольников ABD и BCD соответственно в три и в четыре раза меньше площади треугольника ABC. отрезки AD и DC равны соответственно a и c. Найдите BD.

Прислать комментарий     Решение


Задача 55577

Темы:   [ Свойства симметрий и осей симметрии ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Четырёхугольник имеет две неперпендикулярные оси симметрии. Верно ли, что это — квадрат?

Прислать комментарий     Решение


Задача 79470

Темы:   [ Теория игр (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

В центре квадрата сидит заяц, а в каждом из четырёх углов по одному волку. Может ли заяц выбежать из квадрата, если волки могут бегать только по сторонам квадрата с максимальной скоростью в 1,4 раза большей, чем максимальная скорость зайца?
Прислать комментарий     Решение


Задача 52838

Темы:   [ Вспомогательная окружность ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

На стороне квадрата во внешнюю сторону построен прямоугольный треугольник, гипотенуза которого совпадает со стороной квадрата. Докажите, что биссектриса прямого угла этого треугольника делит плошадь квадрата пополам.

Прислать комментарий     Решение


Задача 53140

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4-
Классы: 8,9

На сторонах AB и AD квадрата ABCD взяты точки K и N соответственно. При этом AK . AN = 2BK . DN. Отрезки CK и CN пересекают диагональ BD в точках L и M. Докажите, что точки K, L, M, N и A лежат на одной окружности.

Прислать комментарий     Решение


Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .