Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 73]
|
|
Сложность: 4 Классы: 10,11
|
Дано натуральное число. Разрешается расставить между цифрами числа плюсы произвольным образом и вычислить сумму (например, из числа 123456789 можно получить 12345 + 6 + 789 = 13140). С полученным числом снова разрешается выполнить подобную операцию, и так далее. Докажите, что из любого числа можно получить однозначное, выполнив не более 10 таких операций.
|
|
Сложность: 4+ Классы: 10,11
|
С левого берега реки на правый с помощью одной лодки переправились N туземцев, каждый раз плавая направо вдвоем, а обратно – в одиночку. Изначально каждый знал по одному анекдоту, каждый – свой. На берегах они анекдотов не рассказывали, но в лодке каждый рассказывал попутчику все известные ему на данный момент анекдоты. Для каждого натурального k найдите наименьшее возможное значение N, при котором могло случиться так, что в конце каждый туземец знал, кроме своего, еще не менее чем k анекдотов.
В точке X сидит преступник, а три полицейских, находящихся в точках A, B и C, блокируют его, то есть точка X лежит внутри треугольника ABC. Новый полицейский сменяет одного из них следующим образом: он занимает точку, равноудаленную от всех трёх полицейских, после чего один из троих уходит, и оставшаяся тройка по-прежнему блокирует преступника. Так происходит каждый вечер. Может ли случиться, что через какое-то время полицейские вновь займут точки A, B и C (известно, что точка X ни разу не попала на сторону треугольника)?
|
|
Сложность: 4+ Классы: 9,10,11
|
В колоду сложено n различных карт. Разрешается переложить любое число рядом лежащих карт (не меняя порядок их следования и не переворачивая) в другое место колоды. Требуется несколькими такими операциями переложить все n карт в обратном порядке.
а) Докажите, что при n = 9 это можно сделать за 5 операций;
Докажите, что при n = 52 это
б) можно сделать за 27 операций;
в) нельзя сделать за 17 операций;
г) нельзя сделать за 26 операций.
|
|
Сложность: 5- Классы: 8,9,10
|
Белые и чёрные играют в следующую игру. В углах шахматной доски стоят два
короля: белый на a1, чёрный на h8. Играющие делают ход по очереди. Начинают белые. Играющий может ставить своего короля на любое соседнее поле
(если только оно свободно), соблюдая следующие правила: нельзя увеличивать
расстояние между королями (расстоянием между двумя полями называется наименьшее
число шагов короля, за которое он может пройти с одного поля на другое: так, в
начале игры расстояние между королями – 7 ходов). Выигрывает тот, кто
поставит своего короля на противоположную кромку доски (белого короля на
вертикаль h или восьмую горизонталь, чёрного – на вертикаль a или первую горизонталь). Кто выиграет при правильной игре?
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 73]