Страница:
<< 1 2
3 >> [Всего задач: 13]
В треугольнике ABC угол при вершине A равен 60°. Внутри треугольника взята такая точка O, что ∠AOB = ∠AOC = 120°. Точки D и E – середины сторон AB и AC. Докажите, что четырёхугольник ADOE – вписанный.
|
|
Сложность: 4 Классы: 8,9,10
|
Внутри остроугольного неравнобедренного треугольника $ABC$ отмечена точка $T$, такая что $\angle ATB = \angle BTC = 120^\circ$. Окружность с центром $E$ проходит через середины сторон треугольника $ABC$. Оказалось, что точки $B,T,E$ лежат на одной прямой. Найдите угол $ABC$.
|
|
Сложность: 4 Классы: 10,11
|
Дан центрально-симметричный октаэдр $ABCA'B'C'$ (пары $A$ и $A'$, $B$ и $B'$, $C$ и $C'$ противоположны), такой, что суммы плоских углов при каждой из вершин октаэдра равны $240^{\circ}$. В треугольниках $ABC$ и $A'BC$ отмечены точки Торричелли $T_1$ и $T_2$. Докажите, что расстояния от $T_1$ и $T_2$ до $BC$ равны.
[Точка Торричелли]
|
|
Сложность: 6 Классы: 8,9,10
|
Дан треугольник
ABC. Найдите внутри его точку
O, для которой сумма
длин отрезков
OA,
OB,
OC минимальна. (Обратите внимание на тот
случай, когда один из углов треугольника больше
120
o.)
На сторонах произвольного треугольника ABC во внешнюю сторону построены равносторонние треугольники ABC1, A1BC и AB1C.
Докажите, что прямые AA1,
BB1 и CC1 пересекаются в одной точке.
Страница:
<< 1 2
3 >> [Всего задач: 13]