Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 372]
Четырёхугольник ABCD вписан в окружность. Точка X лежит на его
стороне AD, причём BX || CD и CX || BA. Найдите BC, если AX = 3/2 и DX = 6.
Четырёхугольник KLMN вписан в окружность. Точка P лежит на его
стороне KL, причём PM || KN и PN || LM.
Найдите длины отрезков KP и LP, если MN = 6 и KL = 13.
Диагонали вписанного в окружность радиуса R четырёхугольника ABCD пересекаются в точке M. Известно, что AB = BC = a, BD = m.
Найдите радиус описанной окружности треугольника BCM.
Во вписанном четырёхугольнике ABCD известны отношения AB : DC = 1 : 2 и BD : AC = 2 : 3. Найдите DA : BC.
Oколо четырёхугольника ABCD можно описать окружность. Точка P – основание перпендикуляра, опущенного из точки A на прямую BC, Q – из A на DC, R – из D на AB и T – из D на BC. Докажите, что точки P, Q, R и T лежат на одной окружности.
Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 372]