Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 372]
|
|
Сложность: 3+ Классы: 9,10,11
|
Окружность с центром I вписана в четырёхугольник ABCD. Лучи BA и CD пересекаются в точке P, а лучи AD и BC пересекаются в точке Q. Известно, что точка P лежит на описанной окружности ω треугольника AIC. Докажите, что точка Q тоже лежит на окружности ω.
|
|
Сложность: 3+ Классы: 8,9,10
|
На окружности радиуса R с диаметром AD и центром O выбраны точки B и С по одну сторону от этого диаметра. Около треугольников ABO и CDO описаны окружности, пересекающие отрезок BC в точках F и E. Докажите, что AF·DE = R².
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Точка $O$ – центр описанной окружности остроугольного треугольника $ABC$, $AH$ – его высота. Точка $P$ – основание перпендикуляра, опущенного из точки $A$ на прямую $CO$. Докажите, что прямая $HP$ проходит через середину стороны $AB$.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ проведена высота $AH$. Точки $M$ и $N$ – середины отрезков $BH$ и $CH$. Докажите, что точка пересечения перпендикуляров, опущенных из точек $M$ и $N$ на прямые $AB$ и $AC$ соответственно, равноудалена от точек $B$ и $C$.
Стороны AB, BC, CD и DA четырёхугольника ABCD
касаются некоторой окружности в точках K, L, M и N соответственно, S – точка пересечения отрезков KM и LN. Известно, что вокруг четырёхугольника SKBL можно описать окружность. Докажите, что вокруг четырёхугольника SNDM также можно описать окружность.
Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 372]