ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 290]      



Задача 108023

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Правильный (равносторонний) треугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Дан равносторонний треугольник ABC. Из его внутренней точки M опущены перпендикуляры MA', MB', MC' на стороны.
Найдите геометрическое место точек M, для которых треугольник A'B'C' – прямоугольный.

Прислать комментарий     Решение

Задача 108750

Темы:   [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Правильный (равносторонний) треугольник ]
[ Метод ГМТ ]
Сложность: 4
Классы: 8,9

Дан равносторонний треугольник ABC. Найти множество всех таких точек D, что треугольники ABD и BCD - равнобедренные (отрезки AB и BC могут служить как основаниями, так и боковыми сторонами).
Прислать комментарий     Решение


Задача 111653

Темы:   [ Перегруппировка площадей ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

Перпендикуляры, опущенные из внутренней точки равностороннего треугольника на его стороны, и отрезки, соединяющие эту точку с вершинами, разбивают треугольник на шесть прямоугольных треугольников. Докажите, что сумма площадей трёх из них, взятых через один, равна сумме площадей трёх остальных.
Прислать комментарий     Решение


Задача 115921

Темы:   [ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4
Классы: 8,9

Точка M взята на стороне AC равностороннего треугольника ABC, а на продолжении стороны BC за точку C отмечена точка N, причём  BM = MN.
Докажите, что  AM = CN.

Прислать комментарий     Решение

Задача 115948

Темы:   [ Концентрические окружности ]
[ Правильный (равносторонний) треугольник ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные четырехугольники (прочее) ]
[ Окружность Аполлония ]
Сложность: 4
Классы: 8,9,10,11

Две окружности с радиусами 1 и 2 имеют общий центр в точке O. Вершина A правильного треугольника ABC лежит на большей окружности, а середина стороны BC – на меньшей. Чему может быть равен угол BOC?

Прислать комментарий     Решение

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 290]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .