ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В трапеции ABCD диагонали AC и BD пересекаются в точке O и перпендикулярны
боковым сторонам. Продолжения боковых сторон пересекаются в точке E.
Найдите площади треугольников EAD и COD, если известно, что
основание AD = 6 и
sin
![]() |
Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 501]
На стороне AB квадрата ABCD взята точка K, на стороне CD – точка L, на отрезке KL – точка M. Докажите, что вторая (отличная от M) точка пересечения окружностей, описанных около треугольников AKM и MLC, лежит на диагонали AC.
Единичный квадрат разбит на конечное число квадратиков (размеры которых могут различаться). Может ли сумма периметров квадратиков, пересекающихся с главной диагональю, быть больше 1993? (Если квадратик пересекается с диагональю по одной точке, это тоже считается пересечением.)
Сторона квадрата ABCD равна 1. На сторонах AB и AD выбраны
точки P и Q, причём периметр треугольника APQ равен 2.
Докажите, что
Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 501] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |