ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 501]      



Задача 55744

Темы:   [ Композиции поворотов ]
[ Поворот на $90^\circ$ ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Поворот помогает решить задачу ]
Сложность: 5-
Классы: 8,9

На сторонах произвольного выпуклого четырёхугольника внешним образом построены квадраты. Докажите, что отрезки, соединяющие центры противоположных квадратов, равны и перпендикулярны.

Прислать комментарий     Решение


Задача 108980

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Диаметр, основные свойства ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Перебор случаев ]
[ Окружности (построения) ]
Сложность: 5
Классы: 8,9

В данную окружность вписать прямоугольник так, чтобы две данные точки внутри окружности лежали на сторонах прямоугольника.
Прислать комментарий     Решение


Задача 109722

Темы:   [ Индукция в геометрии ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Раскраски ]
Сложность: 5+
Классы: 8,9,10,11

На прямоугольном столе лежат равные картонные квадраты n различных цветов со сторонами, параллельными сторонам стола. Если рассмотреть любые n квадратов различных цветов, то какие-нибудь два из них можно прибить к столу одним гвоздем. Докажите, что все квадраты некоторого цвета можно прибить к столу 2n-2 гвоздями.
Прислать комментарий     Решение


Задача 57838

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Удвоение медианы ]
[ Центральная симметрия помогает решить задачу ]
[ Ромбы. Признаки и свойства ]
Сложность: 2+
Классы: 7,8,9

Докажите, что если в треугольнике медиана и биссектриса совпадают, то треугольник равнобедренный.

Прислать комментарий     Решение

Задача 111786

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Признаки равенства прямоугольных треугольников ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 7,8,9

В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Докажите, что все восемь отрезков равны.

Прислать комментарий     Решение

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .