Страница:
<< 68 69 70 71 72 73
74 >> [Всего задач: 366]
|
|
Сложность: 4 Классы: 8,9,10
|
Клетки таблицы 200×200 окрашены в чёрный и белый цвета так, что чёрных клеток на 404 больше, чем белых.
Докажите, что найдётся квадрат 2×2, в котором число белых клеток нечётно.
|
|
Сложность: 5- Классы: 9,10,11
|
Найдите все такие натуральные числа m, что произведение факториалов первых m нечётных натуральных чисел равно факториалу суммы первых m натуральных чисел.
|
|
Сложность: 5 Классы: 9,10,11
|
Участникам тестовой олимпиады было предложено n вопросов. Жюри определяет сложность каждого из вопросов: целое положительное количество баллов, получаемых участниками за правильный ответ на вопрос. За неправильный ответ начисляется 0 баллов, все набранные участником баллы суммируются.
Когда все участники сдали листки со своими ответами, оказалось, что жюри так может определить сложность вопросов, чтобы места между участниками распределились любым наперед заданным образом. При каком наибольшем числе участников это могло быть?
|
|
Сложность: 5+ Классы: 8,9,10
|
Для любых натуральных чисел a1, a2, ..., am, никакие два из которых не равны друг другу и ни одно из которых не делится на квадрат натурального числа, большего единицы, а также для любых целых и отличных от нуля целых чисел b1, b2, ..., bm сумма
не равна нулю. Докажите это.