Страница:
<< 17 18 19 20 21 22 23 [Всего задач: 113]
|
|
Сложность: 7 Классы: 10,11
|
Миша мысленно расположил внутри данного круга
единичного радиуса выпуклый многоугольник, содержащий центр
круга, а Коля пытается угадать его периметр. За один шаг
Коля указывает Мише какую-либо прямую и узнает от него,
пересекает ли она многоугольник. Имеет ли Коля возможность
наверняка угадать периметр многоугольника:
а) через 3 шага с точностью до 0,3;
б) через 2007 шагов с точностью до 0,003?
|
|
Сложность: 3+ Классы: 7,8,9
|
Четыре кузнечика сидели в вершинах квадрата. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если A прыгает через B в точку A1, то векторы и равны). Докажите, что три кузнечика не могут оказаться
а) на одной прямой, параллельной стороне квадрата;
б) на одной произвольной прямой.
|
|
Сложность: 5- Классы: 9,10,11
|
На плоскости даны
n>1
точек. Двое по очереди
соединяют еще не соединенную пару точек вектором одного из двух возможных
направлений. Если после очередного хода какого-то игрока сумма всех
нарисованных векторов нулевая, то выигрывает второй; если же очередной ход невозможен,
а нулевой суммы не было, то выигрывает первый. Кто выигрывает при правильной игре?
Страница:
<< 17 18 19 20 21 22 23 [Всего задач: 113]