ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 993]      



Задача 110831

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Дан ромб ABCD . Радиусы окружностей, описанных около треугольников ABD и ACD , равны 4 и 3. Найдите расстояние между центрами этих окружностей.
Прислать комментарий     Решение


Задача 110832

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Сторона ромба ABCD равна 4. Расстояние между центрами окружностей, описанных около треугольников ACD и ABD , равно 3. Найдите радиусы этих окружностей.
Прислать комментарий     Решение


Задача 110833

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Дан ромб ABCD . Радиусы окружностей, описанных около треугольников ABC и BCD , равны 1 и 2. Найдите расстояние между центрами этих окружностей.
Прислать комментарий     Решение


Задача 110856

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Окружность с центром O проходит через вершину B ромба ABCD и касается лучей CB и CD . Найдите площадь ромба, если DO= , OC= .
Прислать комментарий     Решение


Задача 110888

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Окружность с центром O проходит через вершину C ромба ABCD и касается лучей DC и DA . Найдите площадь ромба, если OA=4 , OD=5 .
Прислать комментарий     Решение


Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 993]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .