Страница:
<< 79 80 81 82
83 84 85 >> [Всего задач: 2440]
Расставьте в кружках, расположенных в вершинах квадрата и в его центре, пять натуральных чисел так, чтобы каждые два числа, соединенные отрезком, имели общий делитель, больший 1, а любые два числа, не соединенные отрезком, были бы взаимно просты.
|
|
Сложность: 3 Классы: 10,11
|
На какую наибольшую степень двойки делится число 1020 – 220?
|
|
Сложность: 3 Классы: 9,10,11
|
Дан многочлен P(x) с целыми коэффициентами. Известно, что Р(1) = 2013, Р(2013) = 1, P(k) = k, где k – некоторое целое число. Найдите k.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Докажите, что если при $n\in\mathbb{N}$ число $2+2\sqrt{12n^2+1}$ целое, то оно – точный квадрат.
Кузнечик прыгает по прямой. В первый раз он прыгнул на 1 см в какую-то сторону, во второй раз – на 2 см и так далее.
Докажите, что после 1985 прыжков он не может оказаться там, где начинал.
Страница:
<< 79 80 81 82
83 84 85 >> [Всего задач: 2440]