ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 2440]      



Задача 116376

Темы:   [ Четность и нечетность ]
[ Принцип крайнего ]
Сложность: 3
Классы: 8,9,10

Гости за круглым столом ели изюм из корзины с 2011 изюминками. Оказалось, что каждый съел либо вдвое больше, либо на 6 меньше изюминок, чем его сосед справа. Докажите, что были съедены не все изюминки.

Прислать комментарий     Решение

Задача 116492

Тема:   [ Уравнения в целых числах ]
Сложность: 3
Классы: 9,10,11

Докажите, что уравнение  l² + m² = n² + 3  имеет бесконечно много решений в натуральных числах.

Прислать комментарий     Решение

Задача 116544

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 8,9

Найдите все такие числа a, что для любого натурального n число  an(n + 2)(n + 4)  будет целым.

Прислать комментарий     Решение

Задача 116557

Темы:   [ Четность и нечетность ]
[ Неравенство Коши ]
Сложность: 3
Классы: 9,10

Даны различные натуральные числа  a1, a2, ..., a14.  На доску выписаны все 196 чисел вида  ak + al,  где  1 ≤ k, l ≤ 14.  Может ли оказаться, что для каждой комбинации из двух цифр среди написанных на доске чисел найдётся хотя бы одно число, оканчивающееся на эту комбинацию (то есть найдутся числа, оканчивающиеся на 00, 01, 02, ..., 99)?

Прислать комментарий     Решение

Задача 116564

Темы:   [ Четность и нечетность ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 10,11

Даны 2011 ненулевых целых чисел. Известно, что сумма любого из них с произведением оставшихся 2010 чисел отрицательна. Докажите, что если произвольным образом разбить все данные числа на две группы и перемножить числа в группах, то сумма двух полученных произведений также будет отрицательной.

Прислать комментарий     Решение

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .