Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 629]
|
|
Сложность: 3 Классы: 6,7,8
|
На доске написаны числа 0, 1, 0, 0. За один шаг разрешается прибавлять единицу к любым двум из них.
Можно ли, повторяя эту операцию, добиться, чтобы все числа стали равными?
|
|
Сложность: 3 Классы: 5,6,7,8,9
|
На турнире им. Ломоносова в институте МИМИНО были конкурсы по математике, физике, химии, биологии и бальным танцам. Когда турнир закончился, выяснилось, что на каждом конкурсе побывало нечётное количество школьников, и каждый школьник участвовал в нечётном количестве конкурсов. Чётное или нечётное число школьников пришло на турнир в МИМИНО?
Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой
вырезаны
а) клеточки b3 и e7;
б) два противоположных угловых поля (a1 и h8)?
На прямой даны точки А, В и, кроме того, 57 точек, лежащих вне отрезка АВ. Каждая из этих 57 точек – либо красного, либо синего цвета. Рассмотрим следующие суммы:
S1 – сумма расстояний от точки А до всех красных точек плюс сумма расстояний от точки В до всех синих точек;
S2 – сумма расстояний от точки А до всех синих точек плюс сумма расстояний от точки В до всех красных точек.
Доказать, что S1 ≠ S2.
Клетки доски 7×7 окрашены в шахматном порядке так, что углы окрашены в чёрный цвет. Разрешается перекрашивать в противоположный цвет любые две соседние клетки. Можно ли с помощью таких операций перекрасить всю доску в белый цвет?
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 629]