Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 288]
|
|
Сложность: 3 Классы: 6,7,8
|
На доске написаны числа 0, 1, 0, 0. За один шаг разрешается прибавлять единицу к любым двум из них.
Можно ли, повторяя эту операцию, добиться, чтобы все числа стали равными?
Клетки доски 7×7 окрашены в шахматном порядке так, что углы окрашены в чёрный цвет. Разрешается перекрашивать в противоположный цвет любые две соседние клетки. Можно ли с помощью таких операций перекрасить всю доску в белый цвет?
На столе стоят семь стаканов – все вверх дном. За один ход можно перевернуть любые четыре стакана.
Можно ли за несколько ходов добиться того, чтобы все стаканы стояли правильно?
|
|
Сложность: 3 Классы: 7,8,9
|
Из книги вырвали 25 страниц. Может ли сумма 50 чисел, являющихся номерами (с двух сторон) этих страниц, быть равной 2001?
|
|
Сложность: 3 Классы: 7,8,9
|
Петя вынимает из мешка чёрные и красные карточки и складывает их в две стопки. Класть карточку на другую карточку того же цвета запрещено. Десятая и одиннадцатая карточки, выложенные Петей, – красные, а двадцать пятая – чёрная. Какого цвета двадцать шестая выложенная карточка?
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 288]