ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 239]      



Задача 52903

Темы:   [ Вспомогательная окружность ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4-
Классы: 8,9

Автор: Тоом А.Л.

Точка K лежит на стороне BC треугольника ABC.
Докажите, что соотношение  AK² = AB·AC – KB·KC  выполнено тогда и только тогда, когда  AB = AC  или  ∠BAK = ∠CAK.

Прислать комментарий     Решение

Задача 65706

Темы:   [ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Угол между касательной и хордой ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 10,11

В треугольнике ABC проведена биссектриса BL. На отрезке CL выбрана точка M. Касательная в точке B к описанной окружности Ω треугольника ABC пересекает луч CA в точке P. Касательные в точках B и M к описанной окружности Γ треугольника BLM, пересекаются в точке Q. Докажите, что прямые PQ и BL параллельны.

Прислать комментарий     Решение

Задача 108665

Темы:   [ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
[ Четырехугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD диагонали AC и BD равны. Кроме того,  ∠BAC = ∠ADB,  ∠CAD + ∠ADC = ∠ABD.  Найдите угол BAD.

Прислать комментарий     Решение

Задача 108154

Темы:   [ Вписанные и описанные окружности ]
[ Биссектриса делит дугу пополам ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Общая касательная к двум окружностям ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

Треугольник ABC вписан в окружность S. Пусть A0 – середина дуги BC окружности S, не содержащей точку A, C0 – середина дуги окружности S, не содержащей точку C. Окружность S1 с центром A0 касается BC, окружность S2 с центром C0 касается AB. Докажите, что центр I вписанной в треугольник ABC окружности лежит на одной из общих внешних касательных к окружностям S1 и S2.

Прислать комментарий     Решение

Задача 108108

Темы:   [ Признаки и свойства касательной ]
[ Признаки равенства прямоугольных треугольников ]
[ Вспомогательные равные треугольники ]
[ Концентрические окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 7,8,9

Автор: Сонкин М.

Пусть O – центр описанной окружности остроугольного треугольника ABC, SA, SB, SC – окружности с центром O, касающиеся сторон BC, CA и AB соответственно. Докажите, что сумма трёх углов: между касательными к SA, проведёнными из точки A, к SB – из точки B, и к SC – из точки C, равна 180°.

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .