ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 1024]      



Задача 111707

Темы:   [ Касающиеся окружности ]
[ Концентрические окружности ]
[ Симметрия и построения ]
[ Окружности (построения) ]
Сложность: 4-
Классы: 8,9

Для данной пары окружностей постройте две концентрические окружности, каждая из которых касается двух данных. Сколько решений имеет задача, в зависимости от расположения окружностей?
Прислать комментарий     Решение


Задача 52721

Темы:   [ Общая касательная к двум окружностям ]
[ Построения ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки постройте общие касательные к двум данным окружностям.

Прислать комментарий     Решение


Задача 52777

Темы:   [ Две касательные, проведенные из одной точки ]
[ Отношение площадей подобных треугольников ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9

В равнобедренный треугольник ABC с основанием AC вписана окружность, которая касается боковой стороны AB в точке M. Из точки M опущен перпендикуляр ML на сторону AC. Найдите величину угла C, если известно, что площадь треугольника ABC равна 1, а площадь четырёхугольника LMBC равна s.

Прислать комментарий     Решение

Задача 52783

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9

На отрезке  AB = 2R  как диаметре построена окружность. Вторая окружность, радиус которой равен половине радиуса первой окружности, касается её внутренним образом в точке A. Третья окружность касается первой окружности внутренним образом, второй окружности – внешним образом, а также касается отрезка AB. Найдите радиус третьей окружности.

Прислать комментарий     Решение

Задача 53002

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9

В прямоугольном секторе AOB из точки B как из центра проведена дуга OC (C – точка пересечения этой дуги с дугой AB) радиуса BO. Окружность ω касается дуги AB, дуги OC и прямой OA, а окружность ω' касается дуги OC, прямой OA и окружности ω. Найдите отношение радиуса окружности ω к радиусу окружности ω'.

Прислать комментарий     Решение

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 1024]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .