Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 372]
В окружность радиуса 5 вписан четырёхугольник ABCD, у которого угол D прямой, AB : BC = 3 : 4.
Найдите периметр четырёхугольника ABCD, если его площадь равна 44.
Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что ∠AMD + ∠BMC = 180°.
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что если выпуклый четырёхугольник ABCD можно разрезать на два подобных четырёхугольника, то ABCD – трапеция или параллелограмм.
На отрезке AB построена дуга α (см. рис.). Окружность ω касается отрезка AB в точке T и пересекает α в точках C и D. Лучи AC и TD пересекаются в точке E, лучи BC и TC – в точке F. Докажите, что прямые EF и AB параллельны.
|
|
Сложность: 3+ Классы: 9,10,11
|
Дан треугольник ABC. Обозначим через M середину стороны AC, а через P – середину отрезка CM. Описанная окружность треугольника ABP пересекает сторону BC во внутренней точке Q. Докажите, что ∠ABM = ∠MQP.
Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 372]