Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 158]
|
|
Сложность: 4 Классы: 8,9,10
|
Из центра симметрии двух равных пересекающихся окружностей проведены два луча, пересекающие
окружности в четырех точках, не лежащих на одной прямой. Докажите, что эти точки лежат на одной
окружности.
|
|
Сложность: 4+ Классы: 9,10,11
|
Как известно, Луна вращается вокруг Земли. Будем считать, что Земля и Луна – это точки, а Луна вращается вокруг Земли по круговой орбите с периодом один оборот в месяц. Летающая тарелка находится в плоскости лунной орбиты. Она может перемещаться прыжками через Луну и Землю: из старого места (точки А) она моментально появляется в новом (в точке A') так, что в середине отрезка АA' находится или Луна, или Земля. Между прыжками летающая тарелка неподвижно висит в космическом пространстве.
а) Определите, какое минимальное количество прыжков потребуется летающей тарелке, чтобы допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты.
б) Докажите, что летающая тарелка, используя неограниченное количество прыжков, может допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты за любой промежуток времени, например, за секунду.
|
|
Сложность: 4+ Классы: 8,9,10
|
Даны два взаимно простых натуральных числа a и b. Рассмотрим множество M целых чисел, представимых в виде ax + by, где x и y – целые неотрицательные числа.
а) Каково наибольшее целое число c, не принадлежащее множеству М?
б) Докажите, что из двух чисел n и с – n (где n – любое целое) одно принадлежит М, а другое нет.
Существует ли фигура, имеющая ровно две оси симметрии, но
не имеющая центра симметрии?
[Теорема Монжа.]
|
|
Сложность: 4+ Классы: 8,9
|
Докажите, что прямые, проведённые через середины сторон
вписанного четырёхугольника перпендикулярно противоположным
сторонам, пересекаются в одной точке.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 158]