Страница:
<< 116 117 118 119
120 121 122 >> [Всего задач: 1547]
На плоскости даны точки A и B и прямая l. По какой
траектории движется точка пересечения медиан треугольников ABC,
если точка C движется по прямой l?
Вершины K и N треугольника KMN перемещаются
по сторонам соответственно AB и AC угла BAC, а стороны
треугольника KMN соответственно параллельны трём данным прямым.
Найдите геометрическое место вершин M.
На сторонах CB и CD квадрата ABCD взяты точки M и K так, что периметр треугольника CMK равен удвоенной
стороне квадрата.
Найдите величину угла MAK.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10.
Докажите, что найдётся прямая, пересекающая по крайней
мере четыре из этих окружностей.
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что если выпуклый четырёхугольник ABCD можно разрезать на два подобных четырёхугольника, то ABCD – трапеция или параллелограмм.
Страница:
<< 116 117 118 119
120 121 122 >> [Всего задач: 1547]