Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 56]
Биссектриса угла A треугольника ABC пересекает описанную окружность в точке D. Пусть P – точка, симметричная центру вписанной окружности треугольника ABC относительно середины стороны BC, M – вторая точка пересечения прямой DP с описанной окружностью. Докажите, что расстояние от точки M до одной из вершин A, B, C равно сумме расстояний от M до двух других вершин.
Имеется инструмент для геометрических построений на
плоскости ("угольник"), позволяющий делать следующее:
а) если даны две точки, то можно провести проходящую
через них прямую;
б) если дана прямая и точка на ней, то можно восставить
перпендикуляр к этой прямой в данной точке.
Как с помощью этого инструмента опустить перпендикуляр
из данной точки на прямую, не проходящую через эту точку?
ABCD – выпуклый четырёхугольник. Окружности, построенные
на отрезках
AB и
CD как на диаметрах, касаются внешним образом
в точке
M , отличной от точки пересечения диагоналей четырёхугольника.
Окружность, проходящая через точки
A ,
M и
C , вторично пересекает
прямую, соединяющую точку
M и середину
AB в точке
K , а окружность,
проходящая через точки
B ,
M и
D , вторично пересекает ту же прямую
в точке
L . Докажите, что
|MK-ML| = |AB-CD| .
|
|
Сложность: 5 Классы: 8,9,10
|
Внутри окружности радиуса
n расположено 4
n отрезков длиной 1.
Докажите, что можно провести прямую, параллельную или перпендикулярную
данной прямой
l и пересекающую по крайней мере два данных отрезка.
|
|
Сложность: 5 Классы: 8,9,10
|
На отрезке длиной 1 закрашено несколько отрезков,
причем расстояние между любыми двумя закрашенными
точками не равно 0, 1. Докажите, что сумма длин закрашенных
отрезков не превосходит 0, 5.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 56]