ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Сфера ω проходит через вершину S пирамиды SABC и пересекает рёбра SA, SB и SC вторично в точках A1, B1 и C1 соответственно. Сфера Ω, описанная около пирамиды SABC, пересекается с ω по окружности, лежащей в плоскости, параллельной плоскости (ABC). Точки A2, B2 и C2 симметричны точкам A1, B1 и C1 относительно середин рёбер SA, SB и SC соответственно. Докажите, что точки A, B, C, A2, B2 и C2 лежат на одной сфере.

Вниз   Решение


Вводится сначала число N, а затем N чисел. Выведите эти N чисел
в следующем порядке: сначала выводятся все нечетные числа в том порядке,
в каком они встречались во входном файле, а затем - все четные.

Входные данные
Вводится число N (0<N<100), а затем N чисел из диапазона Integer.

Пример входного файла
7
2 4 1 3 5 3 1

Пример выходного файла
1 3 5 3 1 2 4

ВверхВниз   Решение


Все точки окружности окрашены произвольным образом в два цвета.
Докажите, что найдётся равнобедренный треугольник с вершинами одного цвета, вписанный в эту окружность.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 62]      



Задача 87296

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Формула Герона ]
Сложность: 3
Классы: 8,9

Высота пирамиды равна 5, а основанием служит треугольник со сторонами 7, 8 и 9. Некоторая сфера касается плоскостей всех боковых граней пирамиды в точках, лежащих на сторонах основания. Найдите радиус сферы.
Прислать комментарий     Решение


Задача 87297

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Формула Герона ]
Сложность: 3
Классы: 8,9

Сфера радиуса касается плоскостей всех боковых граней некоторой пирамиды в точках, лежащих на сторонах основания. Найдите высоту пирамиды, если её основанием служит треугольник со сторонами 5, 6 и 9.
Прислать комментарий     Решение


Задача 87411

Темы:   [ Объем призмы ]
[ Формула Герона ]
Сложность: 3
Классы: 10,11

Площадь основания прямой треугольной призмы равна 4, площади боковых граней равны 9, 10 и 17. Найдите объём призмы.
Прислать комментарий     Решение


Задача 111053

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Формула Герона ]
Сложность: 3
Классы: 8,9

Диагонали трапеции равны 12 и 6, а сумма оснований равна 14. Найдите площадь трапеции.
Прислать комментарий     Решение


Задача 111054

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Формула Герона ]
Сложность: 3
Классы: 8,9

Диагонали трапеции равны 13 и 3, а сумма оснований равна 14. Найдите высоту трапеции.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 62]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .