ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Окружности ω1 и ω2 касаются внешним образом в точке P. Через центр ω1 проведена прямая l1, касающаяся ω2. Аналогично прямая l2 касается ω1 и проходит через центр ω2. Оказалось, что прямые l1 и l2 непараллельны. Докажите, что точка P лежит на биссектрисе одного из углов, образованных l1 и l2.

Вниз   Решение


Даны две непересекающиеся окружности с центрами в точках O1 и O2. Пусть a1 и a2 — внутренние касательные к этим окружностям, a3 и a4 — внешние касательные к ним. Пусть, далее, a5 и a6 — касательные к окружности с центром в O1, проведённые из точки O2, a7 и a8 — касательные к окружности с центром в точке O2, проведённые из точки O1. Обозначим через O точку пересечения a1 и a2. Доказать, что с центром в точке O можно провести две окружности так, чтобы первая касалась a3 и a4, вторая касалась a5, a6, a7, a8, причём радиус второй в два раза меньше радиуса первой.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 87292

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Касательные к сферам ]
Сложность: 4
Классы: 8,9

Основанием треугольной пирамиды ABCD является треугольник ABC , в котором A = , C = , BC = 2 . Рёбра AD , BD , CD равны между собой. Сфера радиуса 1 касается рёбер AD , BD , продолжения ребра CD за точку D и плоскости ABC . Найдите отрезок касательной, проведённой из точки A к сфере.
Прислать комментарий     Решение


Задача 87293

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Касательные к сферам ]
Сложность: 4
Классы: 8,9

Основанием пирамиды является треугольник ABC , в котором A = , AB = AC = 1 . Вершина D пирамиды равноудалена от точек A и B . Сфера касается ребра CD , продолжений рёбер AD , BD за точку D и плоскости ABC . Точка касания с плоскостью основания пирамиды и ортогональная проекция вершины D на эту плоскость лежат на окружности, описанной вокруг треугольника ABC . Найдите рёбра AD , BD , CD .
Прислать комментарий     Решение


Задача 87294

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Касательные к сферам ]
Сложность: 4
Классы: 8,9

Основанием пирамиды PQRS является прямоугольный треугольник PQR , в котором гипотенуза QR равна 2 и катет PQ равен 1. Рёбра PS , QS , RS равны между собой. Сфера радиуса касается ребра RS , продолжений рёбер PS , QS за точку S и плоскости PQR . Найдите отрезок касательной, проведённой к сфере из точки Q .
Прислать комментарий     Решение


Задача 87295

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Касательные к сферам ]
Сложность: 4
Классы: 8,9

Основанием пирамиды является треугольник PQR , в котором PR = 2 , Q = , R = . Вершина S пирамиды равноудалена от точек P и Q . Сфера касается рёбер PS , QS , продолжения ребра RS за точку S и плоскости PQR . Точка касания с плоскостью основания пирамиды и ортогональная проекция вершины S на эту плоскость лежат на окружности, описанной вокруг треугольника PQR . Найдите рёбра PS , QS , RS .
Прислать комментарий     Решение


Задача 87378

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Теорема косинусов ]
Сложность: 4
Классы: 10,11

Сфера касается рёбер AS , CS , AB и BC треугольной пирамиды SABC в точках D , E , F и G соответственно. Найдите отрезок FG , если DE = DF = 8 , DG = 3 и FG на 2 больше, чем GE .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .