Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 31]
|
|
Сложность: 6+ Классы: 9,10
|
Во вписанном четырёхугольнике
ABCD прямая Симсона точки
A относительно
треугольника
BCD перпендикулярна прямой Эйлера треугольника
BCD. Докажите,
что прямая Симсона точки
B относительно треугольника
ACD перпендикулярна
прямой Эйлера треугольника
ACD.
|
|
Сложность: 4- Классы: 8,9,10
|
Дан прямоугольник ABCD. Через точку B провели две перпендикулярные прямые. Первая прямая пересекает сторону AD в точке K, а вторая продолжение стороны CD в точке L. Пусть F – точка пересечения KL и AC. Докажите, что BF ⊥ KL.
|
|
Сложность: 4 Классы: 9,10,11
|
Дан треугольник ABC. Рассматриваются прямые l, обладающие следующим свойством: три прямые, симметричные l относительно сторон треугольника, пересекаются в одной точке. Докажите, что все такие прямые проходят через одну точку.
|
|
Сложность: 4+ Классы: 9,10
|
На диагонали AC вписанного четырёхугольника ABCD взяли произвольную точку P и из неё опустили перпендикуляры PK, PL, PM, PN, PO на прямые AB, BC, CD, DA, BD соответственно. Докажите, что расстояние от P до KN равно расстоянию от O до ML.
|
|
Сложность: 5- Классы: 9,10,11
|
Дан фиксированный треугольник ABC. Пусть D – произвольная точка в плоскости треугольника, не совпадающая с его вершинами. Окружность с центром в D, проходящая через A, пересекает вторично прямые AB и AC в точках Ab и Ac соответственно. Аналогично определяются точки Ba, Bc, Ca и Cb. Точку D назовём хорошей, если точки Ab, Ac, Ba, Bc, Ca и Cb лежат на одной окружности.
Сколько может оказаться точек, хороших для данного треугольника ABC?
Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 31]