ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Гипотенуза KM прямоугольного треугольника KMP является хордой окружности радиуса . Вершина P находится на диаметре, который параллелен гипотенузе. Расстояние от центра окружности до гипотенузы равно . Найдите острые углы треугольника KMP.

Вниз   Решение


Аладдин побывал во всех точках экватора, двигаясь то на восток, то на запад, а иногда мгновенно перемещаясь в диаметрально противоположную точку Земли. Докажите, что был отрезок времени, за которое разность расстояний, пройденных Аладдином на восток и на запад, не меньше половины длины экватора.

ВверхВниз   Решение


Ненулевые числа a, b, c таковы, что каждые два из трёх уравнений  ax11 + bx4 + c = 0,  bx11 + cx4 + a = 0,  cx11 + ax4 + b = 0  имеют общий корень. Докажите, что все три уравнения имеют общий корень.

ВверхВниз   Решение


Доска размером 2005×2005 разделена на квадратные клетки со стороной единица. Некоторые клетки доски в каком-то порядке занумерованы числами 1, 2, ... так, что на расстоянии, меньшем 10, от любой незанумерованной клетки найдется занумерованная клетка. Докажите, что найдутся две клетки на расстоянии, меньшем 150, которые занумерованы числами, различающимися более, чем на 23. (Расстояние между клетками – это расстояние между их центрами.)

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 57385

Тема:   [ Многоугольники (неравенства) ]
Сложность: 5
Классы: 9

Семиугольник  A1...A7 вписан в окружность. Докажите, что если центр этой окружности лежит внутри его, то сумма углов при вершинах  A1, A3, A5 меньше  450o.
Прислать комментарий     Решение


Задача 57388

Тема:   [ Многоугольники (неравенства) ]
Сложность: 5
Классы: 9

Плоский многоугольник A1A2...An составлен из n твёрдых стержней, соединенных шарнирами. Докажите, что если n > 4, то его можно деформировать в треугольник.
Прислать комментарий     Решение


Задача 57389

Тема:   [ Многоугольники (неравенства) ]
Сложность: 5
Классы: 9

Внутри выпуклого многоугольника  A1...An взята точка O. Пусть $ \alpha_{k}^{}$ — величина угла при вершине  Ak, xk = OAk, dk — расстояние от точки O до прямой  AkAk + 1. Докажите, что  $ \sum$xksin($ \alpha_{k}^{}$/2) $ \geq$ $ \sum$dk и  $ \sum$xkcos($ \alpha_{k}^{}$/2) $ \geq$ p, где p — полупериметр многоугольника.
Прислать комментарий     Решение


Задача 57390

Тема:   [ Многоугольники (неравенства) ]
Сложность: 5
Классы: 9

Правильный 2n-угольник M1 со стороной a лежит внутри правильного 2n-угольника M2 со стороной 2a. Докажите, что многоугольник M1 содержит центр многоугольника M2.
Прислать комментарий     Решение


Задача 57391

Тема:   [ Многоугольники (неравенства) ]
Сложность: 5
Классы: 9

Внутри правильного многоугольника  A1...An взята точка O. Докажите, что по крайней мере один из углов AiOAj удовлетворяет неравенствам  $ \pi$(1 - 1/n) $ \leq$ $ \angle$AiOAj $ \leq$ $ \pi$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .