Страница:
<< 73 74 75 76
77 78 79 >> [Всего задач: 694]
|
|
Сложность: 3+ Классы: 7,8,9
|
Сорока-ворона кашу варила, деток кормила. Третьему птенцу досталось столько же каши, сколько первым двум вместе взятым. Четвёртому – столько же, сколько второму и третьему. Пятому – столько же, сколько третьему и четвёртому. Шестому – столько же, сколько четвёртому и пятому. А седьмому не досталось – каша кончилась! Известно, что пятый птенец получил 10 г каши. Сколько каши сварила сорока-ворона?
|
|
Сложность: 3+ Классы: 9,10,11
|
У чисел 1000², 1001², 1002², ... отбрасывают по две последние цифры. Сколько первых членов полученной последовательности образуют арифметическую прогрессию?
|
|
Сложность: 3+ Классы: 6,7,8
|
Мальвина записала по порядку 2016 обыкновенных правильных дробей: ½, ⅓, ⅔, ¼, 2/4, ¾, ... (в том числе, и сократимые). Дроби, значение которых меньше чем ½, она покрасила в красный цвет, а остальные дроби – в синий. На сколько количество красных дробей меньше количества синих?
|
|
Сложность: 3+ Классы: 8,9,10
|
В клетках первого столбца таблицы n×n записаны единицы, в клетках второго – двойки, ..., в клетках n-го – числа n. Числа на диагонали, соединяющей левое верхнее число с правым нижним, стёрли. Докажите, что суммы чисел по разные стороны от этой диагонали отличаются ровно в два раза.
Докажите, что натуральные числа n и n2017 оканчиваются на одну и ту же цифру.
Страница:
<< 73 74 75 76
77 78 79 >> [Всего задач: 694]