Страница:
<< 1 2 3 [Всего задач: 15]
|
|
Сложность: 5- Классы: 9,10,11
|
Касательные к описанной окружности треугольника ABC в точках A и B пересекаются в точке D. Окружность, проходящая через проекции D на прямые BC, CA, AB, повторно пересекает AB в точке C'. Аналогично строятся точки A', B'. Докажите, что прямые AA', BB', CC' пересекаются в одной точке.
|
|
Сложность: 4+ Классы: 10,11
|
Дан остроугольный треугольник ABC.
Найдите на сторонах BC, CA, AB такие точки A', B', C', чтобы наибольшая сторона треугольника A'B'C' была минимальна.
|
|
Сложность: 5 Классы: 8,9,10
|
Дан треугольник ABC и такая точка F, что ∠AFB = ∠BFC = ∠CFA. Прямая, проходящая через F и перпендикулярная BC, пересекает медиану, проведённую из вершины A, в точке A1. Точки B1 и C1 определяются аналогично. Докажите, что A1, B1 и C1 являются тремя вершинами правильного шестиугольника, три другие вершины которого лежат на сторонах треугольника ABC.
|
|
Сложность: 5- Классы: 8,9,10
|
В треугольнике ABC отметили точки A', B' касания сторон BC, AC c вписанной окружностью и точку G пересечения отрезков AA' и BB'. После этого сам треугольник стерли. Восстановите его с помощью циркуля и линейки.
|
|
Сложность: 5 Классы: 10,11
|
В призму ABCA'B'C' вписана сфера, касающаяся боковых граней BCC'B', CAA'C, ABB'A' в точках A0, B0, C0 соответственно. При этом
∠A0BB' = ∠B0CC' = ∠C0AA'.
а) Чему могут равняться эти углы?
б) Докажите, что отрезки AA0, BB0, CC0 пересекаются в одной точке.
в) Докажите, что проекции центра сферы на прямые A'B', B'C', C'A' образуют правильный треугольник.
Страница:
<< 1 2 3 [Всего задач: 15]