Страница:
<< 86 87 88 89
90 91 92 >> [Всего задач: 492]
Внутри выпуклого четырёхугольника ABCD, в котором AB = CD, выбрана точка P таким образом, что сумма углов PBA и PCD равна 180°.
Докажите, что PB + PC < AD.
|
|
Сложность: 4 Классы: 8,9,10
|
На сторонах AB и BC параллелограмма ABCD выбраны точки K и L соответственно так, что ∠AKD = ∠CLD.
Докажите, что центр описанной окружности треугольника BKL равноудален от A и C.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В угол вписаны три окружности $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ (радиус $\Gamma_1$ наименьший, а радиус $\Gamma_3$ наибольший), притом $\Gamma_2$ касается $\Gamma_1$ и $\Gamma_3$ в точках $A$ и $B$ соответственно. Пусть $l$ – касательная в точке $A$ к $\Gamma_1$. Рассмотрим все окружности $\omega$, касающиеся $\Gamma_1$ и $l$. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей $\omega$ и $\Gamma_3$.
Дана фиксированная хорда MN окружности, не являющаяся диаметром. Для каждого диаметра AB этой окружности, не проходящего через точки M и N, рассмотрим точку C, в которой пересекаются прямые AM и BN, и проведём через неё прямую l, перпендикулярную AB.
Докажите, что все прямые l проходят через одну точку.
Точка
O лежит внутри ромба
ABCD . Угол
DAB
равен
110
o . Углы
AOD и
BOC равны
80
o и
100
o соответственно. Чему
может быть равен угол
AOB ?
Страница:
<< 86 87 88 89
90 91 92 >> [Всего задач: 492]