Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 1026]
|
|
Сложность: 4+ Классы: 9,10,11
|
Как известно, Луна вращается вокруг Земли. Будем считать, что Земля и Луна – это точки, а Луна вращается вокруг Земли по круговой орбите с периодом один оборот в месяц. Летающая тарелка находится в плоскости лунной орбиты. Она может перемещаться прыжками через Луну и Землю: из старого места (точки А) она моментально появляется в новом (в точке A') так, что в середине отрезка АA' находится или Луна, или Земля. Между прыжками летающая тарелка неподвижно висит в космическом пространстве.
а) Определите, какое минимальное количество прыжков потребуется летающей тарелке, чтобы допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты.
б) Докажите, что летающая тарелка, используя неограниченное количество прыжков, может допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты за любой промежуток времени, например, за секунду.
|
|
Сложность: 4+ Классы: 9,10,11
|
Дан неравнобедренный остроугольный треугольник ABC. Точки A1, A2 симметричны основаниям внутренней и внешней биссектрис угла A относительно середины стороны BC. На отрезке A1A2 как на диаметре построена окружность α. Аналогично определяются окружности β и γ. Докажите, что эти три окружности пересекаются в двух точках.
|
|
Сложность: 4+ Классы: 8,9,10
|
Даны два взаимно простых натуральных числа a и b. Рассмотрим множество M целых чисел, представимых в виде ax + by, где x и y – целые неотрицательные числа.
а) Каково наибольшее целое число c, не принадлежащее множеству М?
б) Докажите, что из двух чисел n и с – n (где n – любое целое) одно принадлежит М, а другое нет.
Биссектрисы углов
A и
C треугольника
ABC пересекают
описанную около него окружность в точках
E и
D соответственно.
Отрезок
DE пересекает стороны
AB и
BC в точках
F и
G .
Пусть
I – точка пересечения биссектрис треугольника
ABC .
Докажите, что четырёхугольник
BFIG – ромб.
Пусть O – центр описанной окружности треугольника ABC. На сторонах AB и BC выбраны точки M и N соответственно, причём 2∠MON = ∠AOC. Докажите, что периметр треугольника MBN не меньше стороны AC.
Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 1026]