ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Среди всех решений системы
    x² + y² = 4,
    z² + t² = 9,
    xt + yz = 6
выберите те, для которых величина  x + z  принимает наибольшее значение.

Вниз   Решение


При передаче сообщений используется некоторый шифр. Пусть известно, что каждому из трех шифрованных текстов ЙМЫВОТСЬЛКЪГВЦАЯЯ УКМАПОЧСРКЩВЗАХ ШМФЭОГЧСЙЪКФЬВЫЕАКК соответствовало исходное сообщение МОСКВА. Попробуйте расшифровать три текста ТПЕОИРВНТМОЛАРГЕИАНВИЛЕДНМТААГТДЬТКУБЧКГЕИШНЕИАЯРЯ ЛСИЕМГОРТКРОМИТВАВКНОПКРАСЕОГНАЬЕП РТПАИОМВСВТИЕОБПРОЕННИГЬКЕЕАМТАЛВТДЬСОУМЧШСЕОНШЬИАЯК при условии, что двум из них соответствует одно и то же сообщение. Сообщениями являются известные крылатые фразы. (Задача с сайта www.cryptography.ru.)

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 416]      



Задача 61455

Тема:   [ Функции нескольких переменных ]
Сложность: 2+
Классы: 8,9,10,11

Определение. Пусть функция f (x, y) задана во всех точках плоскости с целыми координатами. Назовем функцию f (x, y) гармонической, если ее значение в каждой точке равно среднему арифметическому значений функции в четырех соседних точках, то есть:
f (x, y)=1/4(f (x+1, y)+ f (x-1, y)+f (x, y+1) + f (x, y-1)).
Пусть f (x, y) и g(x, y) — гармонические функции. Докажите, что для любых a и b функция af (x, y) + bg(x, y) также будет гармонической.

Прислать комментарий     Решение

Задача 64891

Тема:   [ Функции. Непрерывность (прочее) ]
Сложность: 2+
Классы: 10,11

Числовая функция  f такова, что для любых x и y выполняется равенство  f(x + y) = f(x) + f(y) + 80xy.  Найдите  f(1), если  f(0,25) = 2.

Прислать комментарий     Решение

Задача 116563

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования (тригонометрия) ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 10,11

Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Прислать комментарий     Решение

Задача 35148

Тема:   [ Функции одной переменной. Непрерывность ]
Сложность: 2+
Классы: 10,11

Постройте функцию, определенную во всех точках вещественной прямой и непрерывную ровно в одной точке.
Прислать комментарий     Решение


Задача 61320

Темы:   [ Монотонность, ограниченность ]
[ Итерации ]
Сложность: 2+
Классы: 8,9,10

Докажите, что для монотонно возрастающей функции f (x) уравнения x = f (f (x)) и x = f (x) равносильны.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .