Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 499]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Четырехугольник $ABCD$ вписан в окружность. $BL$ и $CN$ – биссектрисы треугольников $ABD$ и $ACD$ соответственно. Окружности, описанные вокруг треугольников $ABL$ и $CDN$, пересекаются в точках $P$ и $Q$. Докажите, что прямая $PQ$ проходит через середину дуги $AD$, не содержащей точку $B$.
|
|
Сложность: 4 Классы: 9,10,11
|
В остроугольном треугольнике $ABC$ с высотой $AH=h$ проведена прямая через центры $O$ и $I$ описанной и вписанной окружностей. Эта прямая пересекает стороны $AB$ и $AC$ в точках $F$ и $N$ соответственно, причем около четырехугольника $BFNC$ можно описать окружность. Найдите сумму расстояний от ортоцентра треугольника $ABC$ до его вершин.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.
|
|
Сложность: 4 Классы: 9,10,11
|
В треугольнике ABC сторона BC равна полусумме двух других сторон. Через точку A и середины B', C' сторон AB и AC проведена окружность Ω и к ней из центра тяжести треугольника проведены касательные. Доказать, что одна из точек касания является центром I вписанной окружности треугольника ABC.
На стороне AB квадрата ABCD взята точка K, на стороне CD – точка L, на отрезке KL – точка M. Докажите, что вторая (отличная от M) точка пересечения окружностей, описанных около треугольников AKM и MLC, лежит на диагонали AC.
Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 499]