ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Рассмотрим различные прямоугольники периметра 10, лежащие внутри квадрата со стороной 10. Чему равна наибольшая возможная площадь закрашенной звёздочки (см. рисунок)? Ответ округлите до двух знаков после запятой.

Вниз   Решение


Дана правильная треугольная пирамида BCDE ( B – вершина, CDE – основание). Известно, что CD = a , BC = b . Пирамиду пересекает плоскость γ , параллельная рёбрам BC и DE . На каком расстоянии от ребра DE должна быть проведена плоскость γ , чтобы площадь сечения пирамиды этой плоскостью была наибольшей?

ВверхВниз   Решение


На левую чашу весов положили две круглых монеты, а на правую — ещё одну, так что весы оказались в равновесии. А какая из чаш перевесит, если каждую из монет заменить шаром того же радиуса? (Все шары и монеты изготовлены целиком из одного и того же материала, все монеты имеют одинаковую толщину.)

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 108]      



Задача 86963

Темы:   [ Касательные к сферам ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 4
Классы: 10,11

Сферы с центрами в точках O1 и O2 радиусов 3 и 1 соответственно касаются друг друга. Через точку M , удалённую от O2 на расстояние 3 , проведены две прямые, каждая из которых касается обеих сфер, причём точки касания лежат на прямых по одну сторону от точки M . Найдите угол между касательными, если известно, что одна из них образует с прямой O1O2 угол 45o .
Прислать комментарий     Решение


Задача 86991

Темы:   [ Касательные к сферам ]
[ Тетраэдр и пирамида (прочее) ]
Сложность: 4
Классы: 8,9

Шар радиуса r касается всех боковых граней треугольной пирамиды в серединах сторон её основания. Отрезок, соединяющий вершину пирамиды с центром шара, делится пополам точкой пересечения с основанием пирамиды. Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 86992

Темы:   [ Касательные к сферам ]
[ Тетраэдр и пирамида (прочее) ]
Сложность: 4
Классы: 8,9

Основание пирамиды – ромб со стороной 2 и острым углом 45o . Шар радиуса касается каждой боковой грани в точке, лежащей на стороне основания пирамиды. Докажите, что высота пирамиды проходит через точку пересечения диагоналей ромба, и найдите объём пирамиды.
Прислать комментарий     Решение


Задача 86994

Темы:   [ Касательные к сферам ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 8,9

В треугольной пирамиде ABCD известно, что DC = 9 , DB = AD , а ребро AC перпендикулярно грани ABD . Сфера радиуса 2 касается грани ABC , ребра DC , а также грани DAB , в точке пересечения её медиан. Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 86995

Темы:   [ Касательные к сферам ]
[ Объем помогает решить задачу ]
Сложность: 4
Классы: 8,9

В треугольной пирамиде PABC боковое ребро PB перпендикулярно плоскости основания ABC , PB = 6 , AB = BC = , AC = 2 . Сфера, центр O которой лежит на грани ABP , касается плоскостей остальных граней пирамиды. Найдите расстояние от центра O сферы до ребра AC .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 108]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .