ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 1026]      



Задача 65940

Темы:   [ Композиция центральных симметрий ]
[ Векторы помогают решить задачу ]
Сложность: 4+
Классы: 9,10,11

Автор: Тарасов А.

  Как известно, Луна вращается вокруг Земли. Будем считать, что Земля и Луна – это точки, а Луна вращается вокруг Земли по круговой орбите с периодом один оборот в месяц. Летающая тарелка находится в плоскости лунной орбиты. Она может перемещаться прыжками через Луну и Землю: из старого места (точки А) она моментально появляется в новом (в точке A') так, что в середине отрезка АA' находится или Луна, или Земля. Между прыжками летающая тарелка неподвижно висит в космическом пространстве.
  а) Определите, какое минимальное количество прыжков потребуется летающей тарелке, чтобы допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты.
  б) Докажите, что летающая тарелка, используя неограниченное количество прыжков, может допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты за любой промежуток времени, например, за секунду.

Прислать комментарий     Решение

Задача 66241

Темы:   [ Свойства симметрий и осей симметрии ]
[ Пересекающиеся окружности ]
[ Радикальная ось ]
[ Теоремы Чевы и Менелая ]
Сложность: 4+
Классы: 9,10,11

Дан неравнобедренный остроугольный треугольник ABC. Точки A1, A2 симметричны основаниям внутренней и внешней биссектрис угла A относительно середины стороны BC. На отрезке A1A2 как на диаметре построена окружность α. Аналогично определяются окружности β и γ. Докажите, что эти три окружности пересекаются в двух точках.

Прислать комментарий     Решение

Задача 73729

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Геометрические интерпретации в алгебре ]
[ Уравнения в целых числах ]
[ Целочисленные решетки ]
Сложность: 4+
Классы: 8,9,10

Даны два взаимно простых натуральных числа a и b. Рассмотрим множество M целых чисел, представимых в виде  ax + by,  где x и y – целые неотрицательные числа.
  а) Каково наибольшее целое число c, не принадлежащее множеству М?
  б) Докажите, что из двух чисел n и  сn  (где n – любое целое) одно принадлежит М, а другое нет.

Прислать комментарий     Решение

Задача 108117

Темы:   [ Симметрия помогает решить задачу ]
[ Ромбы. Признаки и свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Свойства биссектрис, конкуррентность ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 8,9

Автор: Жгун В.С.

Биссектрисы углов A и C треугольника ABC пересекают описанную около него окружность в точках E и D соответственно. Отрезок DE пересекает стороны AB и BC в точках F и G . Пусть I – точка пересечения биссектрис треугольника ABC . Докажите, что четырёхугольник BFIG – ромб.
Прислать комментарий     Решение


Задача 108136

Темы:   [ Поворот помогает решить задачу ]
[ Длины и периметры (геометрические неравенства) ]
[ Вспомогательные равные треугольники ]
[ Неравенство треугольника (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 8,9

Пусть O – центр описанной окружности треугольника ABC. На сторонах AB и BC выбраны точки M и N соответственно, причём  2∠MON = ∠AOC.  Докажите, что периметр треугольника MBN не меньше стороны AC.

Прислать комментарий     Решение

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 1026]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .