ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 367]      



Задача 116888

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

На шахматную доску поставлены 11 коней так, что никакие два не бьют друг друга.
Докажите, что на ту же доску можно поставить ещё одного коня с сохранением этого свойства.

Прислать комментарий     Решение

Задача 35627

Темы:   [ Обыкновенные дроби ]
[ Принцип Дирихле (прочее) ]
[ Теория множеств (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 7,8,9,10

Хозяйка испекла для гостей пирог. К ней может прийти либо 10, либо 11 человек. На какое наименьшее число кусков ей нужно заранее разрезать пирог так, чтобы его можно было поделить поровну как между 10, так и между 11 гостями?

Прислать комментарий     Решение

Задача 78607

Темы:   [ Десятичная система счисления ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Чему равна максимальная разность между соседними числами из числа тех, сумма цифр которых делится на 7?
Прислать комментарий     Решение


Задача 32024

Темы:   [ Процессы и операции ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Для того, чтобы застеклить 15 окон различных размеров и форм, заготовлено 15 стекол в точности по окнам (окна такие, что в каждом окне должно быть одно стекло). Стекольщик, не зная, что стекла подобраны, работает так: он подходит к очередному окну и перебирает неиспользованные стекла до тех пор, пока не найдет достаточно большое (то есть либо в точности подходящее, либо такое, из которого можно вырезать подходящее), если же такого стекла нет, то переходит к следующему окну, и так, пока не обойдет все окна. Составлять стекло из нескольких частей нельзя. Какое максимальное число окон может остаться незастекленными?

Прислать комментарий     Решение


Задача 79248

Темы:   [ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Наглядная геометрия в пространстве ]
Сложность: 3+
Классы: 9,10,11

Доказать, что у всякого выпуклого многогранника найдутся две грани с одинаковым числом сторон.
Прислать комментарий     Решение


Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .