Версия для печати
Убрать все задачи
Как, не отрывая карандаша от бумаги, провести шесть отрезков таким образом, чтобы оказались зачёркнутыми 16 точек, расположенных в вершинах квадратной сетки 4×4?

Решение
Существует ли треугольная пирамида, высоты которой равны 1, 2,
3 и 6?


Решение
Коля и Макс живут в городе с треугольной сеткой дорог (см. рисунок). В этом городе передвигаются на велосипедах, при этом разрешается поворачивать только налево. Коля поехал в гости к Максу и по дороге сделал ровно 4 поворота налево. На следующий день Макс поехал к Коле и приехал к нему, совершив только один поворот налево. Оказалось, что длины их маршрутов одинаковы. Изобразите, каким образом они могли ехать (дома Коли и Макса отмечены).


Решение
У выпуклых четырёхугольников
ABCD и
A'B'C'D' соответственные стороны равны.
Доказать, что если
A >
A', то
B <
B',
C >
C' и
D <
D'.


Решение
Шестиугольник ABCDEF – правильный, K и M – середины отрезков BD и EF. Докажите, что треугольник AMK – правильный.

Решение