ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 345]
Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E, AD = DC, BD — биссектриса угла B, ADC = 80o, CED = 110o. Найдите угол ACB.
Точка, расположенная внутри правильного треугольника, удалена от его вершин на расстояния 5, 6 и 7. Найдите площадь треугольника.
Бумажная прямоугольная полоска помещается внутри данного круга. Полоску согнули (не обязательно пополам). Докажите, что после сгибания полоску можно также разместить в этом круге.
С помощью циркуля и линейки постройте треугольник по основаниям двух его биссектрис и прямой, на которой лежит третья биссектриса.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 345] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|