Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 275]
Диагонали трапеции с основаниями AD и BC пересекаются в точке
O.
Докажите, что окружности, описанные около треугольников AOD и BOC касаются друг друга.
На стороне острого угла KOM взята точка L между O и K. Окружность проходит через точки K и L и касается луча OM в точке M. На дуге LM, не содержащей точки K, взята точка N. Расстояния от точки N до прямых OM, OK и KM равны m, k и l соответственно. Найдите расстояние от точки N до прямой LM.
Окружность пересекает одну сторону острого угла AOB в точках C и A (C лежит между O и A) и касается другой стороны угла в точке B. На дуге AB, не содержащей точки C, взята точка D. Расстояния от точки D до прямых AC, OB и AB равны a, b и c соответственно. Найдите расстояние от точки D до прямой BC.
Через вершины A и B треугольника ABC проведена окружность, касающаяся прямой BC, а через вершины B и C – другая окружность, касающаяся прямой AB. Продолжение общей хорды BD этих окружностей пересекает сторону AC в точке E, а продолжение хорды AD одной окружности пересекает другую окружность в точке F.
а) Найдите отношение AE : EC, если AB = 5 и BC = 9.
б) Сравните площади треугольников ABC и ABF.
Вписанная в треугольник ABC окружность касается его сторон в точках K, N и M. Известно, что в треугольнике KNM угол M равен 75°, произведение всех сторон равно 9 + 6
, а вершина K делит отрезок AC пополам. Найдите стороны треугольника ABC.
Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 275]