ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В квадрате 7×7 клеток закрасьте некоторые клетки так, чтобы в каждой строке и в каждом столбце оказалось ровно по три закрашенных клетки.

   Решение

Задачи

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 12601]      



Задача 54429

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

В прямоугольнике ABCD длины отрезков AB и BD равны соответственно 2 и $ \sqrt{7}$. Точка M делит отрезок CD в отношении 1:2, считая от точки C, K - середина AD. Что больше: длина BK или длина AM?

Прислать комментарий     Решение


Задача 54430

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

В треугольнике ABC угол BAC прямой, длины сторон AB и BC равны соответственно 5 и 6. Точка K делит сторону AC в отношении 3:1, считая от точки A, AH - высота треугольника ABC. Что больше: 2 или отношение длины BK к длине AH?

Прислать комментарий     Решение


Задача 103849

Темы:   [ Раскраски ]
[ Таблицы и турниры (прочее) ]
Сложность: 2+
Классы: 7,8

В квадрате 7×7 клеток закрасьте некоторые клетки так, чтобы в каждой строке и в каждом столбце оказалось ровно по три закрашенных клетки.

Прислать комментарий     Решение

Задача 104002

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 7,8,9

Когда Кай справился с этим заданием, Королева дала ему другую ледяную пластинку (см. рисунок). Как разрезать ее на две равные части?


Прислать комментарий     Решение

Задача 34907

Тема:   [ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 2+
Классы: 8,9

Дан выпуклый четырехугольник ABCD. Докажите, что если равны периметры треугольников ABC, BCD, CDA, DAB, то ABCD - прямоугольник.
Прислать комментарий     Решение


Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 12601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .