ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан выпуклый четырёхугольник без параллельных сторон. Для каждой тройки его вершин строится точка, дополняющая эту тройку до параллелограмма, одна из диагоналей которого совпадает с диагональю четырёхугольника. Доказать, что из четырёх построенных точек ровно одна лежит внутри исходного четырёхугольника. ![]() |
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 204]
Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Разрешается проделывать следующее преобразование (перестройку): взяв пару треугольников ABD и BCD с общей стороной, заменить их на треугольники ABC и ACD. Пусть P(n) – наименьшее число перестроек, за которое можно перевести каждое разбиение в любое. Докажите, что
Пусть F1, F2, F3, ... – последовательность выпуклых четырёхугольников, где Fk+1 (при k = 1, 2, 3, ...) получается так: Fk разрезают по диагонали, одну из частей переворачивают и склеивают по линии разреза с другой частью. Какое наибольшее количество различных четырёхугольников может содержать эта последовательность? (Различными считаются многоугольники, которые нельзя совместить движением.)
Дан выпуклый четырёхугольник без параллельных сторон. Для каждой тройки его вершин строится точка, дополняющая эту тройку до параллелограмма, одна из диагоналей которого совпадает с диагональю четырёхугольника. Доказать, что из четырёх построенных точек ровно одна лежит внутри исходного четырёхугольника.
При каком наименьшем n существует выпуклый n-угольник, у которого синусы всех углов равны, а длины всех сторон различны?
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 204] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |