ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри вписанного четырёхугольника ABCD существует точка K, расстояния от которой до сторон ABCD пропорциональны этим сторонам.
Доказать, что K – точка пересечения диагоналей ABCD.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 375]      



Задача 67210

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
Сложность: 4-
Классы: 8,9,10,11

Дан вписанный четырехугольник $ABCD$. На сторонах $AD$ и $CD$ взяты точки $E$ и $F$ так, что $AE=BC$ и $AB=CF$. Пусть $M$ – середина $EF$. Докажите, что угол $AMC$ прямой.
Прислать комментарий     Решение


Задача 103938

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Угол между касательной и хордой ]
[ ГМТ - прямая или отрезок ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10

Внутри вписанного четырёхугольника ABCD существует точка K, расстояния от которой до сторон ABCD пропорциональны этим сторонам.
Доказать, что K – точка пересечения диагоналей ABCD.

Прислать комментарий     Решение

Задача 108908

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Вспомогательные равные треугольники ]
Сложность: 4-
Классы: 8,9

Дан вписанный четырёхугольник ABCD, в котором  ∠ABC + ∠ABD = 90°.  На диагонали BD отмечена точка E, причём  BE = AD.  Из неё на сторону AB опущен перпендикуляр EF. Докажите, что  CD + EF < AC.

Прислать комментарий     Решение

Задача 52389

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Точка Микеля ]
Сложность: 4
Классы: 8,9

Докажите, что окружности, описанные около трёх треугольников, отсекаемых от остроугольного треугольника средними линиями, имеют общую точку.

Прислать комментарий     Решение


Задача 53709

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Пересекающиеся окружности ]
Сложность: 4
Классы: 8,9

Докажите, что четыре точки пересечения окружностей, построенных на сторонах вписанного четырёхугольника как на хордах, и отличные от вершин этого четырёхугольника, лежат на одной окружности.

Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 375]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .