ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Поворот
>>
Центральная симметрия
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Есть прямоугольный стол. Два игрока начинают по очереди класть на него по одному евро так, чтобы эти монеты не перекрывали друг друга. Кто не может сделать ход - проигрывает. Кто выиграет при правильной игре? Решение |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 158]
б) Докажите, что композиция параллельного переноса и центральной симметрии (в обоих порядках) является центральной симметрией.
На круглой сковороде площади 1 испекли выпуклый блин площади больше ½. Докажите, что центр сковороды находится под блином.
Через центр параллелограмма ABCD проведены две прямые. Одна из них пересекает стороны AB и CD соответственно в точках M и K, вторая – стороны BC и AD соответственно в точках N и L. Докажите, что четырёхугольник MNKL – параллеллограмм.
Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 158] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|