Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 375]
|
|
Сложность: 3+ Классы: 8,9,10
|
Внутри угла с вершиной M отмечена точка A. Из этой точки выпустили шар, который отразился от одной стороны угла в точке B, затем от другой стороны в точке C и вернулся в A ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр O описанной окружности треугольника BCM лежит на прямой AM. (Шар считайте точкой.)

В угол вписана окружность с центром O. Через точку A, симметричную точке O относительно одной из сторон угла, провели к окружности касательные, точки пересечения которых с дальней от точки A стороной угла – B и C. Докажите, что центр описанной окружности треугольника ABC лежит на биссектрисе данного угла.
Пусть AA1 и BB1 – высоты неравнобедренного остроугольного треугольника AB, M – середина AB. Описанные окружности треугольников AMA1 и BMB1, пересекают прямые AC и BC в точках K и L соответственно. Докажите, что K, M и L лежат на одной прямой.
В треугольнике ABC угол B равен
60o, биссектрисы AD и CE
пересекаются в точке O. Докажите, что OD = OE.
Пусть точки
A ,
B ,
C лежат на окружности, а прямая
b касается этой окружности в точке
B . Из точки
P , лежащей
на прямой
b , опущены перпендикуляры
PA1 и
PC1 на прямые
AB и
BC соответственно (точки
A1 и
C1 лежат на
отрезках
AB и
BC ). Докажите, что
A1C1
AC .
Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 375]