Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 266]
|
|
Сложность: 4 Классы: 8,9,10
|
Целые числа a и b таковы, что при любых натуральных m и n число am² + bn² является точным квадратом. Докажите, что ab = 0.
|
|
Сложность: 4+ Классы: 10,11
|
Неотрицательные числа x, y, z удовлетворяют неравенствам 5 ≤ x, y, z ≤ 8.
Какое наибольшее и наименьшее значение может принимать величина S = 2x²y² + 2x²z² + 2y²z² – x4 – y4 – z4 ?
|
|
Сложность: 4+ Классы: 9,10,11
|
Найдите все такие пары различных действительных чисел x и y, что x100 – y100 =
299(x – y) и x200 – y200 = 2199(x – y).
|
|
Сложность: 4+ Классы: 8,9,10
|
Дано равенство (am1 – 1)...(amn – 1) = (ak1 + 1)...(akl + 1), где a, n, l и все показатели степени – натуральные числа, причём a > 1.
Найдите все возможные значения числа a.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Найдите все такие пары (x, y) целых чисел, что
1 + 2x + 22x+1 = y².
Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 266]