ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Через вершины A, B и C параллелограмма ABCD со сторонами AB = 3 и BC = 5 проведена окружность, пересекающая прямую BD в точке E, причём BE = 9. Найдите диагональ BD. ![]() ![]() Составьте уравнение плоскости, проходящей через точку M0(x0;y0;z0) перпендикулярно ненулевому вектору ![]() ![]() ![]() В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через диагональ A1C1 грани куба и середину ребра AD . Найдите расстояние от середины ребра AB до плоскости P , если ребро куба равно 3. ![]() ![]() ![]() α, β и γ - углы треугольника ABC. Докажите, что а) ctg( б) tg( ![]() ![]() ![]() Может ли сумма тангенсов углов одного треугольника равняться сумме тангенсов углов другого, если один из этих треугольников остроугольный, а другой тупоугольный? ![]() ![]() |
Страница: 1 2 3 >> [Всего задач: 13]
а) ctg( б) tg(
tg
Тангенсы углов треугольника – целые числа. Чему они могут быть равны?
Может ли сумма тангенсов углов одного треугольника равняться сумме тангенсов углов другого, если один из этих треугольников остроугольный, а другой тупоугольный?
а) ctg б) ctg
Страница: 1 2 3 >> [Всего задач: 13] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |