Страница:
<< 1 2 3 4 5 6 [Всего задач: 29]
|
|
Сложность: 3+ Классы: 7,8,9
|
Внутри выпуклого пятиугольника расположены две точки.
Докажите, что можно выбрать четырехугольник с
вершинами в вершинах пятиугольника так,
что в него попадут обе выбранные точки.
|
|
Сложность: 3+ Классы: 6,7,8
|
На плоскости расположен квадрат и невидимыми чернилами нанесена точка P. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит P (если P лежит на прямой, то он говорит, что P лежит на прямой).
Какое наименьшее число таких вопросов необходимо задать, чтобы узнать, лежит ли точка P внутри квадрата?
|
|
Сложность: 5 Классы: 10,11
|
По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо
каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.
|
|
Сложность: 5- Классы: 6,7,8,9,10,11
|
Петя разрезал прямоугольный лист бумаги по прямой. Затем он разрезал по прямой один из получившихся кусков. Затем он проделал то же самое с одним из трёх получившихся кусков и т.д. Докажите, что после достаточного количества разрезаний можно будет выбрать среди получившихся кусков 100 многоугольников с одинаковым числом вершин (например, 100 треугольников или 100 четырёхугольников и т.д.).
Страница:
<< 1 2 3 4 5 6 [Всего задач: 29]