ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Внутри правильного n-угольника взята точка, проекции которой на все стороны попадают во внутренние точки сторон. Этими точками стороны разделяются на 2n отрезков. Занумеруем их подряд: 1, 2, 3, ..., 2n. Доказать, что сумма длин отрезков с чётными номерами равна сумме длин отрезков с нечётными номерами. ![]() ![]() На окружности радиуса 1 отмечена точка O и из неё циркулем делается засечка вправо радиусом l. Из полученной точки O1 в ту же сторону тем же радиусом делается вторая засечка, и так делается 1968 раз. После этого окружность разрезается во всех 1968 засечках, и получается 1968 дуг. Сколько различных длин дуг может при этом получиться? ![]() ![]() ![]() Разрежьте какой-нибудь квадрат на квадратики двух разных размеров так, чтобы маленьких было столько же, сколько и больших. ![]() ![]() ![]() a, b, c ≥ 0. Докажите, что 2(a³ + b³ + c³) ≥ a²b + ab² + a²c + ac² + b²c + bc². ![]() ![]() ![]() Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону. ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 [Всего задач: 33]
б) показать, что любой прямоугольник можно разрезать на несколько частей, из которых можно сложить квадрат; в) верно ли, что любой многоугольник можно разрезать на несколько частей, из которых можно сложить квадрат?
Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону.
Дано множество точек O, A1, A2, ..., An на плоскости. Расстояние между любыми двумя из этих точек является квадратным корнем из натурального числа. Докажите, что существуют
такие векторы x и y, что для любой точки Ai выполняется равенство
Страница: << 1 2 3 4 5 6 7 [Всего задач: 33] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |