Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 239]
|
|
Сложность: 3+ Классы: 10,11
|
Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно.
Найдите все возможные значения суммы углов SDA, SEB и SFC.
|
|
Сложность: 3+ Классы: 7,8,9
|
Прямая отсекает треугольник AKN от правильного шестиугольника ABCDEF так, что AK + AN = AB.
Найдите сумму углов, под которыми отрезок KN виден из вершин шестиугольника (∠KAN + ∠KBN + ∠KCN + ∠KDN + ∠KEN + ∠KFN).
|
|
Сложность: 3+ Классы: 7,8,9
|
Пусть O – центр описанной окружности остроугольного треугольника ABC, SA, SB, SC – окружности с
центром O, касающиеся сторон BC, CA и AB соответственно.
Докажите, что сумма трёх углов: между касательными к SA,
проведёнными из точки A, к SB – из точки B, и к SC – из точки C, равна 180°.
Через точку I пересечения биссектрис треугольника ABC проведена прямая, пересекающая стороны AB и BC в точках M и N
соответственно. Треугольник BMN оказался остроугольным. На стороне AC выбраны точки K и L так, что ∠ILA = ∠IMB, ∠IKC = ∠INB. Докажите, что
AM + KL + CN = AC.
В выпуклом четырёхугольнике ABCD выполняются равенства: ∠B = ∠C и CD = 2AB. На стороне BC выбрана такая точка X, что ∠BAX = ∠CDA.
Докажите, что AX = AD.
Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 239]