ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC  (AB = BC)  средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB.

   Решение

Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 1024]      



Задача 102403

Темы:   [ Касающиеся окружности ]
[ Площадь круга, сектора и сегмента ]
Сложность: 4
Классы: 8,9

На прямой взяты три различные точки L, M и N (M между L и N, LN$ \ne$MN). На отрезках LM, MN и LN как на диаметрах построены полуокружности, середины которых — соответственно точки A, B и C. Точка C лежит по одну сторону, а точки A и B — по другую сторону от прямой LN. Найдите отношение площади фигуры, ограниченной этими тремя полуокружностями, к площади треугольника ABC.

Прислать комментарий     Решение


Задача 102404

Темы:   [ Касающиеся окружности ]
[ Площадь круга, сектора и сегмента ]
Сложность: 4
Классы: 8,9

На прямой взяты три различные точки A, B и C (B между A и C, AB$ \ne$BC). На отрезках AB, BC и AC как на диаметрах построены полуокружности, середины которых — соответственно точки K, L и M. Точка K лежит по одну сторону, а точки L и M — по другую сторону от прямой AC. Найдите отношение площади фигуры, ограниченной этими тремя полуокружностями, к площади треугольника KLM.

Прислать комментарий     Решение


Задача 108087

Темы:   [ Две касательные, проведенные из одной точки ]
[ Средняя линия треугольника ]
[ Вписанные и описанные окружности ]
[ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 4
Классы: 8,9

Вписанная окружность треугольника ABC касается сторон AB и AC в точках P и Q соответственно. Пусть RS – средняя линия треугольника, параллельная AB, T – точка пересечения прямых PQ и RS. Докажите, что T лежит на биссектрисе угла B треугольника.

Прислать комментарий     Решение

Задача 108123

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вспомогательные равные треугольники ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC  (AB = BC)  средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB.

Прислать комментарий     Решение

Задача 108137

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема синусов ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
[ Вспомогательные равные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Трапеции (прочее) ]
Сложность: 4
Классы: 9,10

Дан четырёхугольник ABCD, вписанный в окружность ω. Касательная к ω, проведённая через точку A, пересекает продолжение стороны BC за точку B в точке K, а касательная к ω, проведённая через точку B, пересекает продолжение стороны AD за точку A в точке M. Известно, что  AM = AD  и  BK = BC.  Докажите, что ABCD – трапеция.

Прислать комментарий     Решение

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 1024]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .