Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 372]
Дан треугольник ABC. На прямых AB, BC и CA взяты точки
C1, A1, и B1 соответственно, отличные от вершин
треугольника. Докажите, что окружности, описанные около треугольников
AB1C1,
A1B1C,
A1BC1, пересекаются в одной точке.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Восстановите вписанно-описанный четырёхугольник $ABCD$ по серединам дуг $AB$, $BC$, $CD$ его описанной окружности.
Пусть
I – точка пересечения биссектрис треугольника
ABC .
Обозначим через
A' ,
B' ,
C' точки, симметричные точке
I
относительно сторон треугольника
ABC . Докажите, что если
окружность, описанная около треугольника
A'B'C' , проходит
через вершину
B , то
ABC = 60
o .
|
|
Сложность: 5- Классы: 8,9,10
|
Окружности S1 и S2 пересекаются в точках M и N. Через точку A окружности S1 проведены прямые AM и AN, пересекающие окружность S2 в точках B и C, а через точку D окружности S2 – прямые DM и DN, пересекающие S1 в точках E и F, причём точки A, E, F лежат по одну сторону от прямой MN, а D, B, C – по другую (см. рис.). Докажите, что если AB = DE, то точки A, F, C и D лежат на одной окружности, положение центра которой не зависит от выбора точек A и D.
Противоположные стороны выпуклого шестиугольника параллельны. Hазовём
высотой такого шестиугольника отрезок с концами на прямых, содержащих противолежащие стороны и перпендикулярный им. Докажите, что вокруг этого шестиугольника можно описать окружность тогда и только тогда, когда его высоты можно параллельно перенести так, чтобы они образовали треугольник.
Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 372]